If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+2.46x-20=0
a = 4.9; b = 2.46; c = -20;
Δ = b2-4ac
Δ = 2.462-4·4.9·(-20)
Δ = 398.0516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.46)-\sqrt{398.0516}}{2*4.9}=\frac{-2.46-\sqrt{398.0516}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.46)+\sqrt{398.0516}}{2*4.9}=\frac{-2.46+\sqrt{398.0516}}{9.8} $
| x+15=2x+21 | | 4.9*x^2+2.46*x+20=0 | | 14-x=83 | | 1/4(16x-4)=21 | | 2(4u+5)=70 | | 4+-(3x)=9-4x | | 5(5+x)=6×15 | | 8(x-7)=10(x-9) | | 13.27=t | | 38+2k=(k+4) | | 17+2x=3x+74 | | -16(v–6)=16 | | 17/13=x/12 | | 9x-10=2x+21 | | 14+4x+3=11x+4(-x) | | w/3+8=8 | | x+11=11+3 | | 6a+7=4a+19 | | x+21=12-(-x) | | 5x+-5=100 | | 19a+19–20a=7 | | 4.9*x^2-7.07*x-20=0 | | 25^(-x+4)=125 | | 4.9*x^2-7.07*x+20=0 | | 2x+27=8x+15 | | x+13-2=11+7x-3 | | 2r−11=3 | | x+1/2x+(x+35)=180 | | 2(u+14)=14 | | s-80/6=2 | | x+2=12-x | | x+1/2x+x+35=180 |